A Mass Spectrometric Criterion for Determining the B- and E-Ring Hydroxylation Pattern in Dimeric Biflavanoids

Jan A. Delcour* and Geert M. Tuytens

Laboratorium voor Toegepaste Organische Scheikunde, Katholieke Universiteit te Leuven, Kardinaal Mercierlaan 92, B–3030 Heverlee, Belgium

Since only the ions with m/z corresponding to retro-Diels–Alder fragmentation products consisting of the original A-, B-, C-, and D-rings can be observed by the low-resolution mass spectra of the methyl ether diacetates of biflavanoids these ions can be used to determine the hydroxylation patterns of the B- and E-rings of unknown dimeric biflavanoids provided ¹H n.m.r. data are available as well.

The chemistry of the dimeric procyanidins is well understood.¹⁻³ In the past few years significant work has also been devoted to other biflavanoids.⁴⁻⁶ Methyl ether acetates of biflavanoids have in the past proved to be useful derivatives to allow the differentiation between the alternatives of C(4)-C(6'') and C(4)-C(8'') interflavanoid links by ¹H n.m.r. spectroscopy,^{3,7} to allow good mass spectra to be obtained, and to allow for a purification after each derivatisation step.⁵ We here show that these derivatives have the further advantage that by interpretation of their mass and ¹H n.m.r. spectra the hydroxylation pattern of the B- and E-rings can be deduced, a feature up to now not possible with ¹H n.m.r. spectroscopy, but only possible through degradations of the pure phenolic substances and chromatography of the resultant products.²

Thus, in the case of derivatives of prodelphinidin B3 (1), a second biflavanoid (2) isolated from beer,^{8,9} and also the five

(1)	$\mathbf{K}^{*} =$	п, к-	$r = \mathbf{K}^{*}$	= OMe	, 2K, 33, 43; 2K, 33
(2)	$R^1 =$	H, R^2	$= R^3$	= OMe	, 2R, 3R, 4S; 2R, 3S
(3)	$R^1 =$	$R^{2} =$	H, R ³	= OMe	, 2R,3S,4R; 2R,3S
(4)	$R^1 =$	$R^2 =$	H, R ³	= OMe	, 2R, 3S, 4S; 2R, 3S
(5)	$R^2 =$	$R^3 =$	H, R ¹	= OMe	, 2R, 3R, 4R; 2R, 3S

(6) $R^1 = H$, $R^2 = OMe$, 2R,3S,4S; 2R,3S (7) $R^2 = H$, $R^1 = OMe$, 2R,3R,4R; 2R,3S

synthetic biflavanoids⁵ (3)–(7), only the ions with m/z values corresponding to retro-Diels-Alder fragmentation products¹ consisting of the original A, B-, C-, and D-rings can be observed. Indeed, if retro-Diels-Alder fragmentation in the 'lower' flavan unit (after a loss of acetic acid in the 'upper' unit) of (1) and (2) is detectable, an ion with m/z 522 is expected. If the opposite breakdown process (loss of acetic acid in the 'lower' unit, retro-Diels-Alder fragmentation in the 'upper' unit) is detectable, an ion with m/z 492 will be observed. Since only ions with m/z 522 were observed, we concluded that only the retro-Diels-Alder fragmentation products consisting of the original A-, B-, C-, and D-rings are detectable. In the case of the synthetic biflavanoid derivatives⁵ (3)—(7) we found ions at m/z 492, 492, 462, 492, and 462, respectively, all indicative of retro-Diels-Alder fragmentation ions as in the case of (1) and (2). If the alternative breakdown pattern were to be detectable we should have observed peaks at m/z462, 462, 492, 462, and 492, respectively. This fragmentation probably occurs as well since the retro-Diels-Alder fragments consisting of the original B-ring are found in the case of (3), m/z 252; (4), 252; (5), 192; (6), 252; and (7), 192. Since in the spectra of (1), (2), (5), (7) the ions with m/z 222 (corresponding to the original E-rings) are found, these ions can be of no diagnostic value.

From the above it is clear that, for example, a biflavanoid such as prodelphinidin B3 can be distinguished from a dimer having (+)-catechin as 'upper' unit and (+)-gallocatechin as the 'terminal' unit by mass spectrometry of the methyl ether diacetate derivative. It is further obvious that ¹H n.m.r. spectroscopy is less adequate in this respect.

Helpful discussions with Professor P. Dondeyne are appreciated.

Received, 17th June 1983; Com. 805

References

- 1 K. Weinges, W. Kaltenhauser, H.-D. Marx, E. Nader, J. Perner, and D. Seiler, *Liebigs Ann. Chem.*, 1968, 711, 184.
- 2 R. S. Thompson, D. Jacques, E. Haslam, and R. J. N. Tanner, J. Chem. Soc., Perkin Trans. 1, 1972, 1387.
- 3 J. A. Delcour, D. Ferreira, and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1983, 1711.
- 4 L. Y. Foo and L. J. Porter, J. Chem. Soc., Perkin Trans. 1, 1978, 1186.
- 5 J. J. Botha, D. Ferreira, and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1981, 1235.
- 6 H. Outtrup and K. Schaumburg, Carlsberg Res. Commun., 1981, 46, 43.
- 7 H. K. L. Hundt and D. G. Roux, J. Chem. Soc., Perkin Trans. 1, 1981, 1227.
- 8 G. Tuytens, Eindwerk Ingenieur Scheik. Landbouwind., Katholieke Universiteit te Leuven, July 1983.
- 9 J. A. Delcour, G. M. Tuytens, and P. Dondeyne, unpublished results.